
Evaluation of the performance of a Navier-Stokes 
and a viscous-inviscid interaction solver in trailing 

edge flap simulations 
 
 

John Prospathopoulos, jprosp@fluid.mech.ntua.gr 
Giorgos Papadakis, papis@fluid.mech.ntua.gr 

Alexis Theofilopoulos, atheofi@yahoo.gr 
Theofanis Tsiantas, th.tsiantas.mech.ntua@gmail.com 

Vasilis Riziotis, vasilis@fluid.mech.ntua.gr 
Spyros Voutsinas, spyros@fluid.mech.ntua.gr 

 
 
 

National Technical University of Athens, 9 Heroon Polytechniou, 15780, Zografou, Athens, Greece 

 
 
 

Abstract: 
Trailing edge flap is one of the most common flow 
control devices aiming at reducing the loads on the 
wind turbine blades. From the modelling point of 
view the dynamic character of flap introduces 
challenges, including unsteady flow phenomena 
and moving/deformable meshes. In the present 
paper airfoils with flapping trailing edge are 
simulated using two different computational tools, 
one viscous-inviscid interaction code and one 
compressible Navier-Stokes code. The predictions 
of the codes for static and dynamic flap situations 
are compared to the existing measurements. In the 
static flap cases, predictions of both models were 
satisfactory in the linear region. In free transition 
the better predictions of the drag coefficient by the 
viscous-inviscid interaction code are attributed to 
the different transition model. In the dynamic flap 
cases, combined with a harmonic pitching motion 
of the airfoil, part of the differences emanates from 
the fact that the actual (measured) flap angle 
deviates from the  nominal one as reported by the 
experimenters. 
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1 Introduction 
Lifetime of large wind turbines depends on the 
aerodynamic and structural loads experienced 
during operation. Most of these loads exhibit 
periodic variation in multiples of the rotational 
frequency. To minimize these loads, control 
systems should be able to reduce the fluctuations 
of the aerodynamic loads or add damping to the 

structural modes. On the other hand the 
aerodynamic performance of the airfoils along the 
blade span should be maximized. Flow control 
devices, such as trailing edge (TE) flaps or vortex 
generators, aim at mitigating the fatigue loads and 
improving the aerodynamic performance of an 
airfoil. In the framework of AVATAR.EU FP7 
project the effect of flow control devices on large 
wind turbine blades is investigated. 

In the present paper, trailing edge flap is 
investigated using simulations by two in-house 
computational tools developed at NTUA. The first 
is the Foil1w viscous-inviscid interaction code [1] 
and the second is the MaPFlow compressible 
Navier-Stokes solver [2]. Two different cases with 
available experimental data were chosen: The first 
refers to static TE flap for which steady state 
simulations are performed. For that case, the 
experimental data are taken from the 
measurements of the TL190-82 airfoil performed in 
the course of the European UPWIND project at the 
wind tunnel of the Institute of Aerodynamics and 
Gas Dynamics (IAG), University of Stuttgart [3]. 
The second case refers to dynamic TE flap for 
which unsteady state simulations are performed. In 
that case the experimental data are taken from 
measurements on NACA0012 carried out by 
Krzysiak and Narkiewicz in the trisonic N-3 wind 
tunnel located at the Institute of Aviation Warsaw, 
Poland [4]. 

2 Numerical models 
Foil1w: Foil1w is a viscous-inviscid interaction 
code developed at NTUA. The potential flow part is 
simulated by singularity distributions along the 
airfoil geometry and the wake. The wake is 
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Figure 2: CL polars for TE static flap, TL190-82 
airfoil, Re=2.5·106. Flap angle takes the values -5o, 
+5o and +10o. Clean conditions correspond to free 
transition and tripped conditions correspond to 
fixed transition 

 

 

Figure 3: CD polars for TE static flap, TL190-82 
airfoil, Re=2.5·106. Flap angle takes the values -5o, 
+5o and +10o.. Clean conditions correspond to free 
transition and tripped conditions correspond to 
fixed transition 

 



MaPFlow uses a C-type mesh of 88000 cells 
generated by ICEM CFD (Figure 4) and performs 
fully turbulent simulations. One flapping period is 
discretized using 720 time steps. The code runs 
initially for constants AoA= αm and flap angle= βm 
until a steady state solution is reached and then 
the harmonic variations of both angles are 
imposed. A periodic solution is achieved after 6 
flapping periods. Foil1w considers fixed transition 
at 5% chord from the leading edge. One flapping 
period is discretized using 400 time steps and 
convergence is achieved again after 6 flapping 
periods. 

 

Figure 4: Computational mesh around the 
NACA0012 airfoil 

The different test cases refer to different phase 
shifts between the airfoil pitching motion and the 
flap angle. Figure 5 shows the variation of the flap 
angle with the angle of attack for φ=148ο, φ=206ο 
and φ=298ο. Measurements deviate from the 
nominal values provided by Equations (1),(2) 
possibly due to elastic deformations occurred 
during the experimental campaign or delay/errors 
in the response of the actuators controlling the 
motion of the airfoil and the flap. In order to fit the 
measured airfoil phase /flap relative motion, Nestor 
[10] suggested corrections to the phase shift from 
φ=148ο to φ=135ο, from φ=206ο to φ=196ο and 
from φ=298ο to φ=280ο. The double frequency of 
the flap movement results in the appearance of two 
loops, one corresponding to a whole flap cycle 
when AoA is positive and another one 
corresponding to a whole flap cycle when AoA is 
negative.  

In order to estimate the effect of the phase shift 
correction, as suggested by Nestor, to the 
predictions, some initial simulations are performed 
with Foil1w. In Figure 6, the modified CL, CM loops 
for φ=148ο are compared with those of φ=135ο 
which is the corrected phase shift. Differences with 
measurements have been decreased suggesting 
that an even better correlation with the measured 
flap angle may result in a better and more fair 
comparison 

. 

 
(a) 

 
(b) 

 
(c) 

Figure 5: Theoretical and measured variation of the 
flap angle with the angle of attack (i.e. pitching 
angle) for (a) φ=148ο, (b) φ=206ο and (c) φ=298ο. 
Nestor [12] suggested phase corrections from 148o 
to 135o, from 206o to 196o and from 298o to 280o in 
order to fit the measured airfoil / flap relative 
motion 

For the comparison between predictions and 
measurements, the corrected phase shift is 



adopted. In Figures 7,8, the predicted CL, CM loops 
are presented. The overall shape of the loops is 
reproduced by both models, however, lift is 
generally overpredicted and moment is 
underpredicted. Larger differences are observed at 
the positive AoAs and are responsible for the 
overestimation in the slope of the double loop (CL-
AoA diagrams, Figure 7). A part of these 
differences can be attributed to the deviation of the 
measured flap angles from the theoretical values 
or to the 3D effects related to the experiment, such 
as the creation of stall cells along the blade model. 

For example, in Figure 5a, it can be observed that 
during the upstroke measured flap angles are 
lower than the nominal (positive AoA, negative 
flap), reducing the lift. A similar observation can be 
made in Figure 5b, where the measured values of 
the flap deflection are again more downwards than 
the theoretical used in the simulations, when the 
airfoil is in the downstroke phase (negative AOA, 
negative flap). Estimation of the 3D effect on the 
slope of the lift loops could be made by comparing 
predicted and measured lift polars at static TE 
flaps. However, no measurements have been 
reported for static TE flap. 

  

 

Figure 6: Modification in CL, CM coefficients 
predicted by Foil1w when the phase shift is 
corrected from 148o to 135o 

It should be noted that Foil1w predictions are 
closer to the measurements compared to those of 
MaPFlow. One possible reason is that MaPFlow 
used fully turbulent simulation instead of fixed 
transition. On the other hand, there are no 
experimental data for drag, which is expected to be 
better predicted using the k-ω SST turbulence 
model implemented in MaPFlow. 

4 Conclusions 
Several static and dynamic TE articulated flap 
cases were simulated by two solvers, the MaPFlow 
CFD solver using the k-ω SST turbulence model, 
and the viscous-inviscid interaction Foil1w model 
using the eN transition model. Regarding the static 
TE cases, numerical models give acceptable CL 
errors in the linear region. In free transition cases, 
the eN transition model showed a better behavior 
than the γ-Reθ transition model, probably because 
it predicts the transition locations more accurately. 
The location of the CL, max was not well reproduced 
by the numerical models. Therefore, in the post-
stall region the predicted errors were almost 
doubled compared to those found in the linear 
region. In the tripped condition cases, drag was 
better predicted by the fully turbulent simulations of 
the CFD code using the k-ω SST model.  

Regarding the dynamic TE flap cases (along with a 
harmonic movement of the airfoil), the measured 
flap angle deviated from the one obtained from the 
theoretical relationships to be used as input to the 
simulations. This is a first reason for the 
differences between predictions and 
measurements of the lift and moment coefficients. 
Although the correction suggested by Nestor partly 
improved the correlation with the experimental 
data, an even more accurate representation of the 
input flap angle must be sought. One way to do 
this is by approximating the flap angle variation by 
a Fourier series in which higher order harmonics 
are retained. A first attempt was made for the 
φ=206ο case as shown in Figure 9. The flap 
representation is much closer to the measured one 
(six coefficients of the Fourier series are retained in 
this case), and the Foil1w CL, CM predictions have 
been considerably improved. CL comes close to 
the measurements during the downstroke of the 
airfoil at positive flap angles, while CM comes close 
to the measurements again during the downstroke 
of the airfoil but at negative flap angles. More 
simulations using both Foil1w and MaPflow codes 
must be performed to evaluate the effect of a more 
accurate flap angle representation on the 
predictions.  

Another reason for the differences between 
predictions and measurements could be the 3D 
effects, such as the creation of stall cells along the 
blade model. Nevertheless, the comparison is 
encouraging because the shape of the lift and 
momentum variations was well reproduced and the 



mean level was predicted satisfactorily in many 
cases. 

 
(a) 

 
(b) 

 
(c) 

Figure 7: Comparison of predicted CL coefficients 
with measurements. Phase shift is (a) 135o, (b) 
196o and c) 280o 
 

 

 
 

 
(a) 

(b) 

(c) 

 Figure 8: Comparison of predicted CM coefficients 
with measurements. Phase shift is (a) 135o, (b) 
196o and c) 280o 



 
(a)

 
(b)

 
(c) 

 

Figure 9: Representation of the flap angle variation 
using Fourier series and predicted CL, CM by 
Foil1w. Comparison with the predictions derived by 
the nominal flap angle variation: (a) Flap angle 
variation, (b) CL and (c) CM 
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